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Abstract

Contention management is an important design com-
ponent to a transactional memory system. Without effec-
tive contention management to ensure forward progress,
a transactional memory system can experience live-lock,
which is difficult to debug in parallel programs. Early work
in contention management focused on heuristic managers
that reacted to conflicts between transactions by picking the
most appropriate transaction to abort. Reactive methods
allow conflicts to happen repeatedly as they do not try to
prevent future conflicts from happening. These shortcom-
ings of reactive contention managers have led to propos-
als that approach contention management as a scheduling
problem—proactive managers. Proactive techniques range
from throttling execution in predicted periods of high con-
tention to preventing groups of transactions running con-
currently that are predicted likely to conflict.

We propose a novel transaction scheduling scheme
called “Bloom Filter Guided Transaction Scheduling”
(BFGTS), that uses a combination of simple hardware and
Bloom filter heuristics to guide scheduling decisions and
provide enhanced performance in high contention situa-
tions. We compare to two state-of-the-art transaction sched-
ulers, “Adaptive Transaction Scheduling” and “Proactive
Transaction Scheduling” and show that BFGTS attains up
to a 4.6x and 1.7x improvement on high contention bench-
marks respectively. Across all benchmarks it shows a 35%
and 25% average performance improvement respectively.

1. Introduction

Transactional Memory (TM), first proposed by Her-

ihly and Moss [15], has received attention from many re-

searchers during the past decade as a replacement for locks

in shared memory parallel programs. TM treats critical

sections of code as atomic units: transactions either com-

plete in totality or not at all. Programming with TM has

been found simpler in user tests by Rossbach et al. [22].

In their studies the appearance of coarse grained locking

semantics—placing transactions around critical sections to

operate atomically—appears to be the main contributor to

the ease of programmability. In addition, TM offers fine

grained locking performance with fewer errors because pro-

grammers are not required to compose numerous locks in

specific locking orders. This suggests TM can be an impor-

tant tool for creating parallel programs efficiently.

These advantages of easier programming semantics and

fine grained locking performance have led to numerous TM

design proposals. TMs can be implemented in hardware,

software or be a hybrid that uses hardware in the common

case, and falls back to software when needed. Details cov-

ering these fundamental design decisions, as well as other

design details such as memory versioning, conflict detec-

tion and isolation properties can be found in the book by

Larus and Rajwar [17]. TM research has caught the atten-

tion of industry and some companies are developing trans-

actional memory extensions to their architectures, such as

AMD’s Advanced Synchronization Facility [10], and Azul

System’s TM solution [11].

There are still open questions in TM, which include

non-transactional operations such as I/O, reducing software

transactional memory overheads, and effective contention

management. For Hardware Transactional Memory Sys-

tems (HTMs), effective contention management is impor-

tant as contention can lead to worse than serial performance

that is difficult to debug.

The issues with contention were first explored in a

TM performance pathologies paper by Bobba et al. [8].

Newer benchmarks representative of future TM applica-

tions, STAMP [9], use large, coarse-grained transactions

exposing problems with contention not seen in earlier TM

benchmarks like transactional versions of SPLASH2 [27].

SPLASH2 did not exhibit much contention because its sci-

entific parallel programs used small, infrequent transac-

tions. Early contention managers were primarily reactive

using a backoff strategy. These reactive contention man-

agers fixed up conflicts between transactions when they

happened, but did not prevent future conflicts from occur-

ring. Reactive contention managers are ideal for low con-
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tention situations, because they impose little runtime over-

head. In high contention situations, reactive contention

managers are ill suited as they can lead to worse than se-

quential performance. This has prompted researchers to

look into transaction scheduling to avoid conflicts before

they happen [2, 3, 4, 6, 12, 21, 26, 28]. These techniques

all attempt to maximize parallel execution and minimize

wasted work by trying to proactively avoid contention.

In this paper we propose “Bloom Filter Guided Transac-

tion Scheduling” (BFGTS). It employs novel Bloom filter

operations to characterize transaction behavior, using this

information to schedule conflict free parallel execution. Our

proposed technique also makes use of some small hardware

structures to reduce runtime overheads. The key contribu-

tions are:

• Novel Bloom filter manipulations to infer transaction

memory footprint behavior

• Hardware extensions to accelerate scheduling

• Compact, efficient software data structures

To evaluate our technique, we compare to two trans-

action scheduling techniques: “Proactive Transaction

Scheduling” (PTS) [6] and “Adaptive Transaction Schedul-

ing” (ATS) [28]. We find on average our techniques beat

PTS by 25% (up to 1.7x on high contention benchmarks),

and beats ATS by 35% (up to 4.6x on high contention

benchmarks) when compared in identical configurations.

2. Background and related work

Contention managers have been receiving increased at-

tention as they improve performance transparently to the

programmer in TM systems. Work involving contention

managers has been primarily done in Software TM (STM)

as contention is very expensive in STM systems. Work done

by Scherer and Scott [24, 25] was the first to go beyond

simple backoff schemes developing multiple reactive back-

off based contention managers that used many heuristics.

They found that it is difficult to come up with a perfect re-

active contention manager as no one set of heuristics from

their studies was the clear winner. Work by Bai et al. [4]

first proposed scheduling transactions to reduce contention.

The main drawback to this work was that each benchmark

needed a custom scheduling function to work. More general

scheduling solutions have been proposed to allow for better

scaling in the STM field. These include proposals by Ansari

et al. [2, 3], Sonmez et al. [26], Dolev et al. [12], Dragojević

et al. [13] and Maldonado et al. [18]. All involve scheduling

transactions in some form, either by using a coarse grained

metric such as commit rate, or attempting to determine pairs

of transactions that should be serialized dynamically.

Contention management research for Hardware TM

(HTM) has been less studied. Bobba et al. [8] identified

many pathologies that can be encountered in HTMs and

proposed some solutions, though these solutions were not

investigated in depth. Work by Zilles et al. [29] is similar in

principal to Ansari’s “Steal on Abort” technique by stalling

a transaction to disallow repeated conflicts. Dependence-

Aware TM (DATM) proposed by Ramadan et al. [21] also

looks to avoid contention but does so in a very different

manner. The DATM technique tracks potential conflicts be-

tween memory locations and then forwards future values

to allow these conflicting transactions to commit success-

fully without a rollback and restart. The main drawback to

DATM is the complicated hardware it requires.

2.1. Adaptive transaction scheduling

ATS is a transaction scheduling technique proposed by

Yoo and Lee [28]. ATS throttles concurrent transaction

execution by monitoring per-transaction conflict pressure
values which are represented by a moving average that in-

creases on a conflict and decreases on commit. If the con-

flict pressure exceeds a preset threshold, transactions queue

themselves onto a central wait queue to execute serially

with respect to other transactions that have seen high con-

tention. When the conflict pressure value decreases below

the threshold, transactions bypass the wait queue and exe-

cute in parallel.

ATS is a simple scheduling proposal that requires little

software to implement, and guarantees that if contention

is very high it will gracefully degrade to the performance

of a single lock for all critical sections. If contention is

low, ATS has little impact on performance. The main draw-

back of ATS is that serializing all transactions to a central

queue when contention rises above a threshold can be too

pessimistic. ATS does not try to identify the transactions

that could run concurrently without conflict. This can result

in over-serialization.

2.2. Proactive transaction scheduling

PTS by Blake et al. [6], like ATS, attempts to schedule

transactions to reduce contention and increase performance.

Unlike ATS, it attempts to identify the transactions that can

run concurrently with each other and serializes those that

should not. PTS accomplishes this by profiling the pattern

of conflicts between transactions during runtime. As con-

flicts happen, PTS fills in a global graph data structure (con-

flict graph) with the nodes representing transactions and the

edges representing the confidence a conflict will occur be-

tween transactions. Before each transaction begins execu-

tion, PTS consults a table representing the currently run-

ning transactions in the system and then consults the conflict

graph to arrive at a prediction of whether it should serialize

against a running transaction or proceed. When a transac-
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tion finishes its execution, it updates the graph, strength-

ening or weakening confidences between nodes. PTS does

this by tracking which transactions it predicted to serialize

behind, and on commit it uses a Bloom filter representing its

read/write set and intersects it with the saved Bloom filters

of the transactions it serialized behind. If the intersections

are not null, indicating a conflict would have happened if the

transactions executed concurrently, the confidence between

nodes is strengthened, otherwise it is weakened to promote

parallel execution. Work by Dragojević is very similar to

PTS, but for software transactional memory systems where

scheduling overheads are less important.

PTS is both more complicated and more expensive in

terms of software overhead than ATS. However, because it

identifies groups of conflicting transactions it can schedule

more optimistically than ATS. PTS performance is still sub-

optimal because of: 1) very large software graph structure

that can be 10’s of megabytes in size; 2) overhead of execut-

ing a scan of software structures on every transaction begin;

and 3) rudimentary Bloom filter use.

3. Motivation

3.1. Transaction behavior

The dynamic nature of code executed inside a transac-

tion makes it hard to predict good schedules that avoid con-

flicts. Just tracking conflict history or contention rate is not

enough to get a full picture of the program’s behavior. To

form good scheduling decisions a proactive scheduler needs

to be able to identify the behavior of transactions and how

they are being affected by conflicts. This can help guide a

scheduler to be more optimistic scheduling some transac-

tions while scheduling pessimistic for others.

Take the following synthetic example. Assume a group

of transactions are modifying locations in memory. Some

transactions continually modify the same general locations

in memory each time they are executed, shown in Fig-

ure 1(a). This transaction exhibits a high amount of memory

locality on each consecutive execution. For the rest of this

paper we will term this locality property “Similarity”. Other
transactions may jump around, working in different regions

of memory each time they execute, shown in Figure 1(b).

This transaction exhibits low similarity on consecutive ex-

ecutions. In terms of transaction conflicts, if two transac-

tions having low similarity conflict in the past, this conflict

is likely to be transient, e.g., inserting to a hash table. Con-

versely, if two transactions conflict and they have high sim-

ilarity, this conflict is likely to persist, e.g., enqueuing and

dequeuing from a queue. This property can help a scheduler

identify such behaviors and treat conflicts accordingly. We

define similarity as a value between 0 and 1 as follows:

Similarity =
SetSize(RWSett−1 ∩RWSett)

AvgRWSetSize
(1)

Where SetSize counts the number of entries in a set,

AvgRWSetSize is the historical average number of entries

in the transaction’s read/write set, and RWSet is the set of
addresses touched by the transaction. Similarity in this case

is calculated using the just completed transaction from time

t and the previous execution t − 1. The more entries in

common between two RWSet′s, the higher the similarity

(closer to 1). Looking at Figure 1 (a), the similarity for Tx1
would be close to 1 as each consecutive execution touches

similar memory.

This type of behavior was measured in the STAMP

benchmarks. Table 1 shows the conflict graph for each

transaction, and the measured value of each transaction’s

similarity. The Conflict Graph in Table 1 is a matrix repre-

sentation of the conflict graph seen by transactions during

the execution of the STAMP benchmarks. Each number in

the column Conflict Graph represents a conflict occurred

at some point between that transaction ID and the transac-

tion ID in listed in column Tx. Each transaction ID repre-

sents a transaction defined in the code. For the Delaunay

benchmark, it has transactions that conflict with every other

transaction in the system. The transactions 0,2 and 3 have

a high similarity and should be serialized, while the trans-

action 1 has a very low similarity and should be treated by

a scheduler as a transaction that has transient conflicts. A

scheduler that can better identify transaction behavior will

be able to make more informed scheduling decisions.

3.2. Using bloom filters to extract transaction behavior

As seen in the previous section, calculating similarity re-

quires a set intersection, which can be expensive if the sets

are compared pairwise. This is not feasible in a HTM, so we

use Bloom Filters [7] to represent and work on transaction

read/write sets efficiently. As shown by Sanchez et al. [23]

implementing bloom filters in hardware can be done effi-

ciently in hardware. A unique contribution of this work is

to develop Bloom filter manipulations to estimate similarity.

We use work by Michael et al. [19] to develop the Bloom

filter operations to estimate similarity. The Bloom filter ma-

nipulations were originally developed to for fast join oper-

ations in large distributed databases. The main equations

used are the set size estimations(denoted as S−1(t)) of en-
coded Bloom filters(denoted as S(t)). Equation 2 calculates
the set size estimation of an encoded Bloom filter where t
is the number of bits set, m is the total size in bits of the

Bloom filter, and k is the number of hash functions used.

S−1(t) ∼= ln(1− t
m )

k ∗ ln(1− 1
m )

(2)
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0x0 0xFFFF Memory

Tx21 Tx22 Tx23

0x0 0xFFFF

(b) Dissimilar Transaction(a) Similar Transaction

Figure 1. Example transaction executions that show the difference between similar execution behav-
iors (a) and dissimilar execution behaviors (b) over time.

Benchmark Tx Conflict Graph Similarity Benchmark Tx Conflict Graph Similarity
Delaunay [16] 0: 0 1 2 0.64 Intruder 0: 0 0.67

1: 0 1 2 3 0.04 1: 1 2 0.40

2: 0 1 2 3 0.56 2: 1 2 0.66

3: 1 2 3 0.90

Genome 0: 0 0.12 Ssca2 0: 0 0.90

1: 0.25 1: 0.90

2: 2 3 0.65 2: 2 0.57

3: 2 0.74

4: 4 0.29

Kmeans 0: 0 0.38 Labyrinth 0: 0 0.86

1: 1 2 0.67 1: 1 2 0.45

2: 1 0.68 2: 1 2 0.90

Vacation 0: 0 0.26

Table 1. Matrix representation of the conflict graph observed during the execution of each STAMP
benchmark and measured similarity for each unique transaction.

An estimation of set size of the intersection between two

Bloom filters shown in Equation 3 is also used.

S−1AND(t) ∼= S−11 (t) + S−12 (t)− S−1(S1(t) ∪ S2(t)) (3)

Finally, Equation 3 derives the “Similarity” metric using

Bloom filters to represent read/write sets.

Similarity ∼= S−1AND(t)
AvgRWSetSize(Txn)

(4)

4. Implementation

This section describes the hardware and software imple-

mentation of BFGTS. The design uses fine-grained schedul-

ing between transactions and borrows concepts from PTS.

BFGTS maintains a graph structure in software of nodes

and edges to represent conflict history and confidence to fa-

cilitate scheduling decisions. The majority of BFGTS is

implemented as a software runtime that sits between the ap-

plication and the Operating System. A small TLB like hard-

ware accelerator is also present that operates when it sees a

TM_BEGIN instruction from the processor.

During the discussion of BFGTS there are two types of

transaction IDs (TxID) that will be used in this section:

“Static Transaction ID”(sTxID) and “Dynamic Transac-

tion ID”(dTxID). An sTxID is statically assigned in the pro-

gram code. A dTxID is a concatenation of thread ID and

sTxID.

4.1. Scheduling hardware accelerator

In BFGTS, before a transaction begins execution it must

scan a global array called theCPU Table—a list of the trans-

actions running on the processors in the system. At each

entry in the table, a confidence value representing the like-

lihood of a conflict between the transaction to be scheduled

and the running transaction is retrieved from a global graph

data structure. If the confidence exceeds a threshold value

the transaction is serialized. Scanning the CPU Table at the
start of every transaction adds overhead to each transaction.

BFGTSminimizes this overhead by using a hardware ac-

celerator to scan the CPU Table, look up confidence val-

ues, and compare them to a preset threshold. This is then

used to effect a scheduling decision in a few cycles. This

accelerator is triggered upon seeing a TX_BEGIN instruc-

tion. These operations are relatively simple, therefore the

hardware is small. The hardware implements the algorithm

shown in Example 1.

The scheduling hardware is illustrated in Figure 2. It

consists of a small cache, a handful of control registers, and

logic connected to the coherent interconnect. Each proces-
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Example 1 Lookup algorithm implemented by hardware

accelerator

1 bool s c h e d u l e T r a n s a c t i o n ( i n t sTxID )

2 {
3 f o r ( i =0 ; i < s i z e o f ( CPUTable ) ; i ++){
4 con f i d x =CPUTable [ i ]>> s h i f t v a l u e ;

5 con f= c on f i d e n c eTab l e [ sTxID ] [ c on f i d x ] ;

6 i f ( con f > t h r e s h o l d ) {
7 dTxID wai t on=CPUTable [ i ] ;

8 re turn true ; / / c o n f l i c t p r e d i c t e d
9 }
10 }
11 re turn f a l s e ; / / no c o n f l i c t p r e d i c t e d
12 }
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Figure 2. Hardware required to accelerate
scheduling on TX BEGIN for a 4 core system.

sor gets an identical predictor unit so the predictions are

fully distributed. The control registers consist of a CPU Ta-

ble that represents all the remote processors in the system

and the dTxID of its currently executing transaction. The

other registers are as follows: a physical base address of the

confidence value table to index into, the confidence thresh-

old to compare confidence values against, a shift register for

truncating dTxIDs in the CPU Table to sTxIDs, and a reg-

ister to hold the dTxID of a transaction to serialize against

for later access by software. The hardware predictor con-

tains a small cache that is exclusively used for caching the

confidence table. The cache is necessary because the con-

fidence tables can be pushed out of the L1 caches, increas-

ing the time it takes to make a prediction. The cache is also

modified to fetch cache lines evicted by an invalidate snoop.

This is required to prevent always taking a miss when ac-

cessing the cache because the main processor writes to the

confidence tables frequently. The hardware overhead of the

small cache and accelerator is very small.

To interface the software with the hardware predic-

tion unit, the TX_BEGIN instruction is modified to trigger

the predictor to form a prediction, and a new instruction

TX_QUERY_PREDICTOR is added to modify the control

registers of the predictor. TX_BEGIN traditionally puts the

CPU into transactional mode, takes a register checkpoint,

but takes no register arguments. TX_BEGIN now takes a

vector to a suspendTx() function for the processor to

jump to if the hardware predictor returns that a conflict

is likely and the transaction should serialize. TX_BEGIN
triggers the hardware predictor to perform the algorithm in

Example 1 and waits for it to return either yes, a conflict

is likely and jump to suspendTx() or continue execu-

tion. The TX_QUERY_PREDICTOR instruction acts like

the ioctl() system call for the accelerator engine. The

instruction is used to communicate information such as the

physical address of the confidence table to use in the hard-

ware predictor, query what dTxID to serialize against, set

the confidence threshold to use, and query if a dTxID is still

executing in the system to allow busy waiting.

Additional requests are added to the coherent intercon-

nect to allow the predictors to update their arrays represent-

ing the state of each remote CPU. When a transaction is

allowed to execute, it broadcasts onto the interconnect the

dTxID of the starting transaction as well as the CPU ID. The

other predictors snoop this broadcast and update their ar-

rays accordingly. This is similar to TLB shootdown mech-

anisms when page table structures are updated on one CPU

that need to be updated to other CPU’s TLBs. On a trans-

action commit or abort, the CPU broadcasts the CPU ID

along with the transaction outcome for the other predictors

to update their internal state.

4.2. Software runtime component

The rest of BFGTS is kept in a software runtime to do

book keeping operations, such as updating the confidences

and calculating similarities of transactions. These book

keeping functions can be quite complicated. Therefore a

hardware mechanism would be infeasible as the amount of

logic and storage required would be on the order of an addi-

tional processor core. Properly optimized software with the

necessary ISA support is sufficient.

4.2.1. Data structure organization. The data structures

used in BFGTS are inspired by PTS, but modified to be

more efficient in both layout and space. An overview of

the data structures are shown in Figure 3.

The first data structure is a set of confidence tables that

are allocated per processor. This allows easy caching in

the private cache attached to the hardware accelerator. The

confidence tables hold the values that predict how likely a

conflict is between two transactions if they were to execute

concurrently in the future. In PTS, the confidence table was

one global table that had a confidence entry for each dTxID.

This table could grow to be 10’s of MBs in size. Instead

of tracking a confidence for every pair of dTxIDs, BFGTS

compresses the table to only maintain confidence values be-

tween each pair of sTxIDs assigned in the code. By tracking
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dTxID 0 Stats {
avg_size
similarity 
tx_waiting_on
}

dTxID N-1 Stats {
avg_size
similarity 
tx_waiting_on
}

dTxID 0:
Read/Write Set

Bloom Filter 

dTxID N-1:
Read/Write Set

Bloom Filter

sTxID 0 sTxID 1 sTxID 2

sTxID 0 100 57 157

sTxID 1 99 200 220

sTxID 2 20 30 19

Per CPU Confidence Table

... ...

Tx Statistics Arrays

Figure 3. Data-structures for the confidence
tables, transaction statistics table and Bloom
filter tables kept in virtual memory.

only sTxIDs, the confidence table reduces to a maximum

size of 800Bytes for the benchmarks tested.

The second data structure required is an array of statis-

tics kept for each dTxID that is encountered during runtime.

For each dTxID three items are stored: average transaction

size, similarity, and if a conflict was predicted, the dTxID

of the conflicting transaction. The final data structure is a

table of the most recent Bloom filters for each dTxID. The

Bloom filters are used to calculate the average similarity of

each dTxID, and to update confidence of conflict between

sTxIDs on commit.

These data structures grow in similar fashion to the data

structures of PTS. The Confidence Tables grow in memory

in O(M2) whereM is the number of transactions declared

statically in the code. The Tx Statistics Array grow in mem-

ory in O(NM) whereN is the number of threads andM is

the number of transaction declared in the code. These struc-

tures can grow to be unbounded, and therefore may be in-

feasible for very large transactional codes. A solution to this

may be to allow aliasing in the prediction data structures—

multiple transactions mapping to the sameConfidence Table
and Tx Statistics Array locations. This is left as future work
and not explored in this paper.

4.2.2. Scheduling subroutines. The bulk of BFGTS exists

as a software runtime. The software executes in user space,

and is fully distributed. Three scheduling operations are

done in software: Transaction Suspend, Transaction Abort,

and Transaction Commit.

Transaction Suspend is the routine that the CPU vec-

tors to when the TX_BEGIN instruction is informed by the

hardware predictor a conflict is likely and the transaction

needs to serialize. Example 2 illustrates how predicted con-

flicts are serialized in BFGTS. The dTxID of the transac-

tion being serialized against is recorded for use later dur-

ing transaction commit. If a dTxIDi is predicted to con-

flict with another dTxIDj that is historically small, then

dTxIDi stalls waiting for dTxIDj to commit or abort.

If dTxIDj is larger than a small transaction threshold

then it is suspended and another thread switched in. In

Example 2 Suspend Transaction Handling Pseudo Code

1 void suspendTx ( i n t dTxID , i n t dTxIDSusp )

2 {
3 sim =0 . 5∗ ( simOf ( dTxID )+ simOf ( dTxIDSusp ) ) ;

4 decay=decayVal ∗(1− sim ) ;

5 decConfProb ( sTxID , sTxIDSusp , decay ) ;

6 s t a t s T a b l e [ dTxID ] . txWai t ingOn=dTxIDSusp ;

7 i f ( avgTxSize ( dTxIDSusp)>=SMALL TX SIZE){
8 p t h r e a d y i e l d ( ) ;

9 } e l s e {
10 s t a l lOnTx ( dTxIDSusp ) ;

11 }
12 r e s t o r e c h e c k p o i n t ( ) ;

13 }

Example 3 Conflict Handling Pseudo Code

1 void t x C o n f l i c t ( i n t dTxId , i n t dTxIdConf )

2 {
3 sim =0 . 5∗ ( simOf ( dTxId )+ simOf ( dTxIdConf ) ) ;

4 i n c = i ncVa l ∗ sim ;

5 i n cC o n f l i c t P r o b ( dTxID , dTxIDConf , i n c ) ;

6 i n cC o n f l i c t P r o b ( dTxIDConf , dTxID , i n c ) ;

7 }

BFGTS pthread_yield() is used to switch threads.

Upon exiting suspendTx() the transaction restores its

register checkpoint and jumps to the PC to re-execute the

TX_BEGIN instruction. To allow transactions to return

to scheduling optimistically, a decay operation is used to

slowly decrease the confidence that a conflict will occur be-

tween two sTxIDs. Decay is weighted by the average sim-

ilarity of the two dTxIDs that are predicted to conflict to

drive how quickly decay occur. If a conflict is predicted

between two transactions and they are both very similar to

themselves, then a predicted conflict is likely to be accurate,

and the decay is small. On the other hand, if the transactions

are dissimilar, the decay will be large, allowing the confi-

dence to decay quickly to allow the two transactions to be

scheduled concurrently.

On Transaction Abort due to a conflict, first the transac-

tion rolls back its speculatively written state. Then it calls

the txConflict() routine presented in Example 3 to in-

crement confidence values of future conflict between the

two dTxIDs. Again similarity is used to guide how much

the confidence is incremented by.

When a transaction commits, various book keeping for

that transaction needs to happen for accurate scheduling in

the future. These operations are shown in pseudo-code in

Example 4. These items are the average transaction size,

the confidence between dTxIDs if one serialized against the

other, and the average similarity of the committed transac-
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Example 4 Pseudo code for routines used during Transac-

tion Commit.

1 void commitTx ( i n t dTxID )

2 {
3 upda teAvgSize ( dTxID ) ;

4 updateBloom ( dTxID ) ;

5 i n t wai t ingOn=

6 ch e ckWasSe r i a l i z e d ( dTxID ) ;

7

8 i f ( wa i t ingOn !=NO TX){
9 sim =0 . 5∗ ( simOf ( dTxID )+ simOf ( wa i t ingOn ) ) ;

10 i f ( i n t e r s e c t B l o om s ( dTxID , wa i t ingOn ) ) {
11 incConfP rob ( dTxID , wai t ingOn ,

12 i n cVa l ∗ sim ) ;

13 } e l s e {
14 decConfProb ( dTxID , wai t ingOn ,

15 decVal∗(1− sim ) ) ;

16 }
17 }
18 }
19

20 void updateBloom ( i n t dTxID )

21 {
22 nBloom=readCPUBloomFi l t e r ( ) ;

23 uBloom=UNION( nBloom ,

24 b l o omF i l t e r T a b l e [ dTxID ] ) ;

25 newSim=ca lcS im ( nBloom ,

26 b l o omF i l t e r T a b l e [ dTxID ] ,

27 uBloom ) ;

28 newSim=

29 newSim / t x S t a t s [ dTxID ] . avgTxSize ;

30 t x S t a t s [ dTxID ] . sim=

31 0 . 5∗ ( t x S t a t s [ dTxID ] . sim+newSim ) ;

32 }
33

34 double ca l cS im ( nBloom , oBloom , uBloom )

35 {
36 den=NUMHASHBITS∗ l n (1−1/NUMBLOOMBITS) ;

37 newSize=

38 l n (1−( b i t C n t ( nBloom ) /NUMBLOOMBITS ) ) / den ;

39 o l d S i z e =

40 l n (1−( b i t C n t ( oBloom ) /NUMBLOOMBITS ) ) / den ;

41 un i onS i z e =

42 l n (1−( b i t C n t ( uBloom ) /NUMBLOOMBITS ) ) / den ;

43 re turn ( newSize+ o l dS i z e−un i onS i z e ) ;

44 }

tion. To update the confidence of a conflict occurring in

the future between two transactions that serialized the re-

spective Bloom filters are intersected. If an intersection is

not null then the confidence is incremented, otherwise it is

decremented weighted by similarity.

Updating similarity is the most expensive part of

BFGTS. As seen in pseudo-code in Example 4, calculating

similarity requires two expensive functions: bitCnt(),

and ln(). However, modern ISAs support both operations

at the instruction level. A low latency 64-bit wide popu-

lation count instruction, and a floating point logarithm in-

struction exist in modern ISAs like x86. These instructions

are: popcnt and fyl2x [1]. The latencies of these in-

structions are 2-cycles and 13-cycles respectively for the

AMD K10 architecture [14].

The transaction commit stage of the scheduling runtime

can be particularly expensive, especially for small transac-

tions, adding 100’s of cycles of overhead to a transaction

that may only be a few 10’s of cycles in length. To reduce

the overhead for small transactions similarity is updated for

these transactions once every n commits. Large transac-

tions are able to amortize the overhead of updating simi-

larity on every commit, and usually benefit from the added

scheduling accuracy.

4.3. BFGTS-HW/Backoff algorithm

To further reduce overhead, we present a hybrid BFGTS

predictor borrowing ideas from Yoo and Lee’s [28] ATS

to allow the runtime to switch between using randomized

backoff when contention is low and BFGTS using the hard-

ware accelerator when contention is high. To measure con-

tention ATS’s metric conflict pressure is used to determine

when to switch between BFGTS and randomized backoff

with the goal of saving execution overhead. To implement

the HW/Backoff predictor small changes are made to the

presented BFGTS algorithm and described in the following

paragraphs.

On TM_BEGIN the runtime checks the conflict pressure

for the sTxID that wishes to execute, if it is over a set thresh-

old then BFGTS is enabled and a scheduling prediction is

made to suspend or continue execution. Otherwise, no pre-

diction is made and the transaction begins execution. This

allows the BFGTS-HW/Backoff predictor to save overhead

on a transaction begins by not always having to walk the

CPU Table on TX_BEGIN.
When a transaction commits, it checks conflict pres-

sure first in commitTx() from Example 4 to determine

if the transaction needs to perform the Bloom filter calcula-

tions. When conflict pressure is low, commitTx() skips

performing the similarity calculations eliminating schedul-

ing overhead. To update conflict pressure, the BFGTS-

HW/Backoff algorithm increases pressure on aborts in the

function txConflict() from Example 3, and predicted

conflicts in suspendTx() from Example 2 in the same

fashion as ATS. On commits, BFGTS-HW/Backoff de-

creases conflict pressure. Section 5 will show that being

able to switch between BFGTS and randomized backoff

eliminates enough overhead to allow larger Bloom filters

to be used and in some cases increase performance.
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Feature Description
Processors 16 one IPC Alpha cores @ 2GHz

Special popcnt 2-cycle latency,

Instructions fyl2x 15-cycle latency

L1 Caches 64kB, 1 cycle latency, 2-way associative,

64-byte line size

Tx Confidence 2kB, 16-way associative

Cache 1 cycle latency, 64-byte line size

L2 Cache 32MB, 32 cycle latency, 16-way associa-

tive, 64-byte line size

Interconnect Shared bus at 2GHz

Main Memory 2048MB, 100 cycles latency

Linux Kernel Modified v2.6.18

Contention PTS, ATS, BFGTS-SW, BFGTS-HW,

Managers BFGTS-HW/Backoff,

BFGTS-NoOverhead

Signature Size 512bit-8192bit for BFGTS commit rou-

tines, perfect signature used for conflict de-

tection.

Table 2. M5 Simulation Parameters

Benchmark Input Parameters
Delaunay [16] -i large.2 -m30 -t64

Genome -g4096 -s32 -n524288 -t64

Kmeans -m20 -n20 -t0.05 -i random50000 12 -p64

Vacation -n8 -q10 -u80 -r65536 -t131072 -c64

Intruder -a10 -l32 -n8192 -s1 -t64

Ssca2 -s15 -i1.0 -u1.0 -l3 -p3 -t64

Labyrinth -i random-x96-y96-z3-n128.tx -t64

*We chose not to present the Bayes benchmark because of its non-

deterministic finishing conditions as noted in [9], which makes direct

comparisons between contention managers inconclusive

Table 3. STAMP Benchmark input parameters

5. Evaluation

5.1. Methodology

The M5 Full System Simulator [5] is used to evaluate

BFGTS. The baseline TM system is based on LogTM [20]

and has Operating System (OS) support. Three differ-

ent scheduling based contention managers are evaluated:

Adaptive Transaction Scheduling, Proactive Transaction

Scheduling, and Bloom Filter Guided Transaction Schedul-

ing. The simulation parameters are detailed in Table 2. The

latencies for the popcnt and fyl2x instructions are mod-

eled as well. The hardware accelerator with accompanying

Tx Confidence Cache size as described in Table 2 has an

area overhead of ∼3% of one 64kB L1 data cache.

The experiments for ATS, PTS and the four BFGTS vari-

ants assume an overcommitted system with 64 threads with

four threads assigned per processor. We chose this config-

uration, as an overcommitted system is typical for systems

running an OS. The advantage of such overcommitted sys-

tems is that when a thread blocks the OS can switch in an-

other thread. This avoids leaving a core idle thus increasing

throughput. We test the dynamically tuning software ver-

sion of ATS developed by Yoo and Lee [28] using pthreads

to suspend and wake threads when throttling. We test

the standard version of PTS presented by Blake et al. [6].

We tested four versions of BFGTS: The hardware accel-

erated version presented in the previous sections BFGTS-

HW, an all software version called BFGTS-SW, the hybrid

BFGTS algorithm from Section 4.3 combining BFGTS-

HW and Backoff managers called BFGTS-HW/Backoff,

and BFGTS-NoOverhead. BFGTS-NoOverhead, as its

name implies, implements BFGTS where all the software

functions presented in Section 4.2 complete in one cy-

cle. This is done to evaluate how well BFGTS predicts

and schedules around conflicts when it does not have to

amortize the cost of book keeping operations. BFGTS-

NoOverhead also uses perfect read/write set signatures.

The transaction schedulers are evaluated with the

STAMP benchmark suite [9]. The benchmark parameters

are shown in Table 3. These benchmarks stress the TM sys-

tem, especially the contention manager as they can suffer

high contention when using a simple backoff manager as

shown in Table 4. Statistics are collected only during the

parallel phase of each benchmark. For the Labyrinth bench-

mark, we modify the code to perform the grid copy outside

of the transaction as has been done by others. This allows

some parallel scaling as unmodified it operates serially.

5.2. Results

5.2.1. Overall performance. The results presented in this

section are the configurations of the BFGTS predictors with

their optimal size Bloom filter. The Bloom filter size was

varied from 512bits to 8192bits and Section 5.3.1 looks at

performance sensitivity to Bloom filter size. Update fre-

quency for small transactions was set to every 20 commits,

and small transactions were defined as transactions with an

average size of 10 cache lines or less. BFGTS-HW/Backoff

uses contention pressure threshold value of 0.25 and heav-

ily biases past history, therefore the frequency of switching

between backoff and BFGTS-HW is slow.

Figure 4(a) shows the speedups attained for each con-

tention manager (Backoff, ATS, PTS, BFGTS-SW, BFGTS-

HW, BFGTS-HW/Backoff and BFGTS-NoOverhead) on a

16 CPU system over a single core. Figure 4(b) normalizes

the speedup values to percent improvement over PTS. Ta-

ble 4 shows the contention experienced by each tested con-

tention manager.

Backoff is the worst performing contention manager. It

experiences the highest contention, as can be seen in Ta-

ble 4. This in turn leads to its poor performance compared

to the proactive schedulers for the STAMP benchmarks as
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Figure 4. Overall speedup and percent improvement over PTS for tested contention managers on a
16 processor system.

Benchmark Backoff PTS ATS BFGTS BFGTS BFGTS BFGTS
-SW -HW -HW/Backoff -NoOverhead

Delaunay 73.5% 28.0% 23.9% 22.2% 21.7% 23.7% 23.6%

Genome 61.1% 1.4% 1.0% 1.1% 1.1% 3.3% 3.8%

Kmeans 20.5% 2.9% 0.7% 1.2% 1.9% 6.5% 1.8%

Vacation 10.2% 8.9% 3.2% 4.6% 3.2% 5.3% 1.8%

Intruder 70.4% 4.6% 4.1% 5.5% 3.2% 9.9% 6.0%

Ssca2 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Labyrinth 20.2% 20.5% 6.5% 12.5% 9.3% 9.4% 9.3%

Table 4. Contention rates for the STAMP benchmarks for Backoff, PTS, ATS, BFGTS-SW, BFGTS-HW,
BFGTS-HW/Backoff and BFGTS-NoOverhead on a 16 processor system.

seen in Figure 4. Ssca2 is the exception because it experi-

ences little contention and favors a very low overhead con-

tention manager.

ATS does well for most benchmarks, it is only 10%

worse than PTS, and is simpler in design. Most of the per-

formance loss is on Delaunay, Kmeans and Intruder bench-
marks. They have high contention which causes ATS to

schedule pessimistically. This is primarily due to these

benchmarks having dense conflict patterns and varying de-

grees of similarity as seen in Table 1. ATS is good for

benchmarks with sparse conflict patterns, such as Genome
or Vacation.

PTS is a more optimistic scheduler than ATS and there-

fore attains better performance. Because of its scheduling

algorithm, PTS is both too optimistic and pessimistic at

times as seen by the varied contention numbers in Table 4.

This leads to poorer overall performance on average, and

PTS loses to all BFGTS variants.

BFGTS-NoOverhead presents the best case performance

of the BFGTS technique by modeling all scheduling op-

erations completing in one cycle. As can be seen in Fig-

ures 4(a) and 4(b), BFGTS-NoOverhead is comparable or

better than all the tested contention managers. It is on aver-

age 50% better than PTS. This is due to both its low over-

head as well as better predictions from using perfect read-

/write signatures for similarity calculations

BFGTS-SW uses no hardware acceleration, and does all

scheduling operations in software. This adds overhead and

decreases overall performance even though it has low con-

tention. This overhead causes BFGTS-SW to lose on 4 out

of 7 benchmarks to PTS, ATS or Backoff. These bench-

marks are Kmeans, Vacation, Ssca2 and Labyrinth. The re-
maining benchmarks see improvement, implying BFGTS-

SW makes better predictions that either ATS or PTS, over-

coming its software overheads. BFGTS-SW has only a 7%

average improvement over PTS because of these overheads.

BFGTS-HW eliminate some of the overheads of

BFGTS-SW by using the hardware accelerator from Sec-

tion 4.1 to perform fast scheduling predictions. BFGTS-

HW gets 25% better performance on average than PTS and

18% over BFGTS-SW. The hardware accelerator enables

significant performance improvement. BFGTS-HW gets a

maximum performance increase of 75% over PTS in the In-
truder benchmark and 4.6x over ATS inDelaunay. BFGTS-
HW does lose in 3 out of 7 benchmarks to ATS or Backoff

because it also deals with overheads involved with calculat-

ing similarities on commit. Those benchmarks are Vacation,
Ssca2 and Labyrinth.

BFGTS-HW/Backoff further eliminates overhead by

switching between backoff and BFGTS-HW getting 30%

better performance than PTS on average. Switching be-

tween low overhead backoff and BFGTS-HW gets signif-

icant performance increases for the Genome and Vacation
benchmarks, approaching BFGTS-No Overhead perfor-

mance. This is because BFGTS-HW/Backoff is able save

scheduling overhead for Genome. For Vacation BFGTS-
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Figure 5. Time breakdown of the overheads for PTS, ATS, BFGTS-SW, BFGTS-HW and BFGTS-
HW/Backoff for a 16 processor system.

HW/Backoff both saves overhead and can use larger Bloom

filters for similarity calculations to make better predic-

tions. It is also able to get closer to Backoff on Ssca2
and Labyrinth. BFGTS-HW/Backoff does increase con-

tention some, as seen in Table 4, because it is switching

continuously between backoff and BFGTS-HW. This leads

to slightly worse performance than BFGTS-HW for some

benchmarks.

Figure 5 provides a breakdown of where each schedul-

ing technique spends it execution time normalized to

single processor execution time. In cases where ATS

has worse performance—Delaunay, Kmeans and Intruder
benchmarks—most of its time is spent in kernel mode. This

is due to ATS serializing threads to a central wait queue us-

ing pthread operations when contention is high. These op-

erations quickly dominate runtime when ATS has to throttle

execution for high contention applications. In other cases

such as Ssca2, ATS is able to attain higher performance

due to its extremely low scheduling overheads. This is

in contrast to the BFGTS techniques which spend a fair

amount of execution time in scheduling code for all bench-

marks. Overall the overhead is less than that of PTS because

the BFGTS technique appears to be making better predic-

tions from the similarity metric, and the BFGTS-HW and

BFGTS-HW/Backoff extensions further help to reduce ex-

ecution overhead. This allows for better performance in the

benchmarks Kmeans, Ssca2, Vacation and Genome which

are overhead sensitive. In the case of BFGTS-HW/Backoff,

it significantly reduces overhead of BFGTS-HW allowing

for much higher performance on the Genome and Vaca-
tion benchmarks. In the benchmark Intruder scheduling is

needed continuously, all methods spend a large amount of

time scheduling to keep contention under control and pro-

vide forward progress.

5.3. Sensitivity studies

There are many parameters to explore that effect perfor-

mance for the BFGTS technique. Presented here are the

two parameters that had noticeable effects on performance:

Bloom filter size, and Small transaction accounting interval.

5.3.1. Bloom filter size. Bloom filter size has a noticeable

impact on performance for BFGTS-HW as shown in Fig-

ure 6(a). For benchmarks Kmeans, Ssca2 and Intruder, the
smallest Bloom filter size of 512bits performs best. These

benchmarks are sensitive to the overhead imposed by doing

the similarity calculations for large Bloom filters.

For Delaunay, Genome, and Vacation, these benchmarks

prefer larger Bloom filters, on the order of 1024bits to

2048bits in size. They can tolerate the overhead of doing

the similarity calculations when committing a transaction

as it is offset by better predictions leading to better perfor-

mance. As the Bloom filter sizes increase to greater than

4096bits, the overhead of doing the similarity calculations
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Figure 6. Speedups attained for different sized Bloom filters for BFGTS-HW and BFGTS-HW/Backoff
for a 16 processor system.

dominates any performance increase had from better pre-

diction accuracy.

The last benchmark, Labyrinth, appears insensitive to

Bloom filter size until the largest Bloom filter (8192bits)

is used. Labyrinth has very large transactions, and therefore

large Bloom filters allow for better prediction accuracy and

prevent overly pessimistic predictions. Because the transac-

tions are large, it is able to amortize the cost of calculating

similarity with 8192bit Bloom filters.

For the BFGTS-HW/Backoff contention manager, Fig-

ure 6(b) shows it is not as sensitive to Bloom filter size

as BFGTS-HW. Because BFGTS-HW is turned on and off

by BFGTS-HW/Backoff it is able to on average use larger

Bloom filters. This is especially apparent for the Vaca-
tion benchmark where BFGTS-HW/Backoff is able to use

8192bit Bloom filters and approach the performance of

BFGTS-No Overhead. On the other hand, BFGTS-HW is

only able to amortize the cost of using a 2048bit filter as

seen if Figure 6(a) and achieves significantly less perfor-

mance due to lower prediction accuracy.

5.3.2. Small transaction calculation interval. As covered
in Section 4.2.2, to eliminate some of the overhead of cal-

culating similarity for transactions that are very small, a

sweep of accounting intervals for similarity was performed.

This consisted of testing the similarity calculations on every

commit, every 10 commits, and every 20 commits. Updat-

ing on every commit affects overall average performance of

BFGTS-HW, decreasing it to 20% better on average over

PTS. Performing similarity calculations for small transac-

tions every 10 gets an overall average performance of 23%

better than PTS. As presented in the results here performing

similarity calculations for small transactions every 20 gets

an overall average performance of 25% better than PTS.

6. Conclusion

For transactional memory to be widely adopted, it has to

be easy to work with. The study by Rossbach et al. [22]

indicated that it is indeed easier to program with fewer con-

currency errors compared to legacy techniques. Contention

in TM is an important problem, particularly when novice

programmers create large critical sections with irregular be-

havior. To achieve scalable performance contention must be

minimized, but requiring the programmer to identify and fix

these sources of contention by hand essentially eliminates

the programmability benefits of TM. To remove the respon-

sibility of discovering these sources of contention from the

programmer, proactive transaction scheduling techniques

have been proposed. They attempt to avoid contention be-

fore it happens; achieving better performance in high con-

tention situations when reactive contention managers fail.

In this work we propose a new proactive scheduling tech-

nique called “Bloom Filter Guided Transaction Schedul-

ing” (BFGTS). It uses Bloom filters to characterize trans-

action behavior to guide scheduling predictions coupled

with simple hardware to accelerate high overhead opera-

tions. BFGTS-HW obtains a 25% speedup on average over

PTS and up to 1.7x improvement on high contention bench-

marks. Compared to ATS, BFGTS-HW obtains 35% bet-

ter performance on average and up to 4.6x improvement on

high contention benchmarks. A hybrid version, BFGTS-

HW/Backoff can do better, getting 30% speedup over PTS

and 40% over ATS on average.
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