Bloom Filter Guided Transaction Scheduling

Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge
Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor
{blakeg,rdreslin,tnm } @umich.edu

Abstract

Contention management is an important design com-
ponent to a transactional memory system. Without effec-
tive contention management to ensure forward progress,
a transactional memory system can experience live-lock,
which is difficult to debug in parallel programs. Early work
in contention management focused on heuristic managers
that reacted to conflicts between transactions by picking the
most appropriate transaction to abort. Reactive methods
allow conflicts to happen repeatedly as they do not try to
prevent future conflicts from happening. These shortcom-
ings of reactive contention managers have led to propos-
als that approach contention management as a scheduling
problem—proactive managers. Proactive techniques range
from throttling execution in predicted periods of high con-
tention to preventing groups of transactions running con-
currently that are predicted likely to conflict.

We propose a novel transaction scheduling scheme
called “Bloom Filter Guided Transaction Scheduling”
(BFGTS), that uses a combination of simple hardware and
Bloom filter heuristics to guide scheduling decisions and
provide enhanced performance in high contention situa-
tions. We compare to two state-of-the-art transaction sched-
ulers, “Adaptive Transaction Scheduling” and “Proactive
Transaction Scheduling” and show that BFGTS attains up
to a 4.6x and 1.7x improvement on high contention bench-
marks respectively. Across all benchmarks it shows a 35%
and 25% average performance improvement respectively.

1. Introduction

Transactional Memory (TM), first proposed by Her-
ihly and Moss [15], has received attention from many re-
searchers during the past decade as a replacement for locks
in shared memory parallel programs. TM treats critical
sections of code as atomic units: transactions either com-
plete in totality or not at all. Programming with TM has
been found simpler in user tests by Rossbach et al. [22].
In their studies the appearance of coarse grained locking

978-1-4244-9435-4/11/$26.00 ©2011 IEEE

semantics—placing transactions around critical sections to
operate atomically—appears to be the main contributor to
the ease of programmability. In addition, TM offers fine
grained locking performance with fewer errors because pro-
grammers are not required to compose numerous locks in
specific locking orders. This suggests TM can be an impor-
tant tool for creating parallel programs efficiently.

These advantages of easier programming semantics and
fine grained locking performance have led to numerous TM
design proposals. TMs can be implemented in hardware,
software or be a hybrid that uses hardware in the common
case, and falls back to software when needed. Details cov-
ering these fundamental design decisions, as well as other
design details such as memory versioning, conflict detec-
tion and isolation properties can be found in the book by
Larus and Rajwar [17]. TM research has caught the atten-
tion of industry and some companies are developing trans-
actional memory extensions to their architectures, such as
AMD’s Advanced Synchronization Facility [10], and Azul
System’s TM solution [11].

There are still open questions in TM, which include
non-transactional operations such as I/O, reducing software
transactional memory overheads, and effective contention
management. For Hardware Transactional Memory Sys-
tems (HTMs), effective contention management is impor-
tant as contention can lead to worse than serial performance
that is difficult to debug.

The issues with contention were first explored in a
TM performance pathologies paper by Bobba et al. [8].
Newer benchmarks representative of future TM applica-
tions, STAMP [9], use large, coarse-grained transactions
exposing problems with contention not seen in earlier TM
benchmarks like transactional versions of SPLASH2 [27].
SPLASH?2 did not exhibit much contention because its sci-
entific parallel programs used small, infrequent transac-
tions. Early contention managers were primarily reactive
using a backoff strategy. These reactive contention man-
agers fixed up conflicts between transactions when they
happened, but did not prevent future conflicts from occur-
ring. Reactive contention managers are ideal for low con-

75

tention situations, because they impose little runtime over-
head. In high contention situations, reactive contention
managers are ill suited as they can lead to worse than se-
quential performance. This has prompted researchers to
look into transaction scheduling to avoid conflicts before
they happen [2, 3, 4, 6, 12, 21, 26, 28]. These techniques
all attempt to maximize parallel execution and minimize
wasted work by trying to proactively avoid contention.

In this paper we propose “Bloom Filter Guided Transac-
tion Scheduling” (BFGTS). It employs novel Bloom filter
operations to characterize transaction behavior, using this
information to schedule conflict free parallel execution. Our
proposed technique also makes use of some small hardware
structures to reduce runtime overheads. The key contribu-
tions are:

e Novel Bloom filter manipulations to infer transaction
memory footprint behavior

e Hardware extensions to accelerate scheduling
e Compact, efficient software data structures

To evaluate our technique, we compare to two trans-
action scheduling techniques: “Proactive Transaction
Scheduling” (PTS) [6] and “Adaptive Transaction Schedul-
ing” (ATS) [28]. We find on average our techniques beat
PTS by 25% (up to 1.7x on high contention benchmarks),
and beats ATS by 35% (up to 4.6x on high contention
benchmarks) when compared in identical configurations.

2. Background and related work

Contention managers have been receiving increased at-
tention as they improve performance transparently to the
programmer in TM systems. Work involving contention
managers has been primarily done in Software TM (STM)
as contention is very expensive in STM systems. Work done
by Scherer and Scott [24, 25] was the first to go beyond
simple backoff schemes developing multiple reactive back-
off based contention managers that used many heuristics.
They found that it is difficult to come up with a perfect re-
active contention manager as no one set of heuristics from
their studies was the clear winner. Work by Bai et al. [4]
first proposed scheduling transactions to reduce contention.
The main drawback to this work was that each benchmark
needed a custom scheduling function to work. More general
scheduling solutions have been proposed to allow for better
scaling in the STM field. These include proposals by Ansari
etal. [2, 3], Sonmez et al. [26], Dolev et al. [12], Dragojevi¢
et al. [13] and Maldonado et al. [18]. All involve scheduling
transactions in some form, either by using a coarse grained
metric such as commit rate, or attempting to determine pairs
of transactions that should be serialized dynamically.

Contention management research for Hardware TM
(HTM) has been less studied. Bobba et al. [8] identified

many pathologies that can be encountered in HTMs and
proposed some solutions, though these solutions were not
investigated in depth. Work by Zilles et al. [29] is similar in
principal to Ansari’s “Steal on Abort” technique by stalling
a transaction to disallow repeated conflicts. Dependence-
Aware TM (DATM) proposed by Ramadan et al. [21] also
looks to avoid contention but does so in a very different
manner. The DATM technique tracks potential conflicts be-
tween memory locations and then forwards future values
to allow these conflicting transactions to commit success-
fully without a rollback and restart. The main drawback to
DATM is the complicated hardware it requires.

2.1. Adaptive transaction scheduling

ATS is a transaction scheduling technique proposed by
Yoo and Lee [28]. ATS throttles concurrent transaction
execution by monitoring per-transaction conflict pressure
values which are represented by a moving average that in-
creases on a conflict and decreases on commit. If the con-
flict pressure exceeds a preset threshold, transactions queue
themselves onto a central wait queue to execute serially
with respect to other transactions that have seen high con-
tention. When the conflict pressure value decreases below
the threshold, transactions bypass the wait queue and exe-
cute in parallel.

ATS is a simple scheduling proposal that requires little
software to implement, and guarantees that if contention
is very high it will gracefully degrade to the performance
of a single lock for all critical sections. If contention is
low, ATS has little impact on performance. The main draw-
back of ATS is that serializing all transactions to a central
queue when contention rises above a threshold can be too
pessimistic. ATS does not try to identify the transactions
that could run concurrently without conflict. This can result
in over-serialization.

2.2. Proactive transaction scheduling

PTS by Blake et al. [6], like ATS, attempts to schedule
transactions to reduce contention and increase performance.
Unlike ATS, it attempts to identify the transactions that can
run concurrently with each other and serializes those that
should not. PTS accomplishes this by profiling the pattern
of conflicts between transactions during runtime. As con-
flicts happen, PTS fills in a global graph data structure (con-
flict graph) with the nodes representing transactions and the
edges representing the confidence a conflict will occur be-
tween transactions. Before each transaction begins execu-
tion, PTS consults a table representing the currently run-
ning transactions in the system and then consults the conflict
graph to arrive at a prediction of whether it should serialize
against a running transaction or proceed. When a transac-

76

tion finishes its execution, it updates the graph, strength-
ening or weakening confidences between nodes. PTS does
this by tracking which transactions it predicted to serialize
behind, and on commit it uses a Bloom filter representing its
read/write set and intersects it with the saved Bloom filters
of the transactions it serialized behind. If the intersections
are not null, indicating a conflict would have happened if the
transactions executed concurrently, the confidence between
nodes is strengthened, otherwise it is weakened to promote
parallel execution. Work by Dragojevic¢ is very similar to
PTS, but for software transactional memory systems where
scheduling overheads are less important.

PTS is both more complicated and more expensive in
terms of software overhead than ATS. However, because it
identifies groups of conflicting transactions it can schedule
more optimistically than ATS. PTS performance is still sub-
optimal because of: 1) very large software graph structure
that can be 10’s of megabytes in size; 2) overhead of execut-
ing a scan of software structures on every transaction begin;
and 3) rudimentary Bloom filter use.

3. Motivation

3.1. Transaction behavior

The dynamic nature of code executed inside a transac-
tion makes it hard to predict good schedules that avoid con-
flicts. Just tracking conflict history or contention rate is not
enough to get a full picture of the program’s behavior. To
form good scheduling decisions a proactive scheduler needs
to be able to identify the behavior of transactions and how
they are being affected by conflicts. This can help guide a
scheduler to be more optimistic scheduling some transac-
tions while scheduling pessimistic for others.

Take the following synthetic example. Assume a group
of transactions are modifying locations in memory. Some
transactions continually modify the same general locations
in memory each time they are executed, shown in Fig-
ure 1(a). This transaction exhibits a high amount of memory
locality on each consecutive execution. For the rest of this
paper we will term this locality property “Similarity”. Other
transactions may jump around, working in different regions
of memory each time they execute, shown in Figure 1(b).
This transaction exhibits low similarity on consecutive ex-
ecutions. In terms of transaction conflicts, if two transac-
tions having low similarity conflict in the past, this conflict
is likely to be transient, e.g., inserting to a hash table. Con-
versely, if two transactions conflict and they have high sim-
ilarity, this conflict is likely to persist, e.g., enqueuing and
dequeuing from a queue. This property can help a scheduler
identify such behaviors and treat conflicts accordingly. We

define similarity as a value between 0 and 1 as follows:

SetSize(RW Set;—1 N RW Set;)
AvgRW SetSize

Similarity = (D)
Where SetSize counts the number of entries in a set,
AvgRW SetSize is the historical average number of entries
in the transaction’s read/write set, and RV Set is the set of
addresses touched by the transaction. Similarity in this case
is calculated using the just completed transaction from time
t and the previous execution ¢ — 1. The more entries in
common between two RW Set’s, the higher the similarity
(closer to 1). Looking at Figure 1 (a), the similarity for Tx1
would be close to 1 as each consecutive execution touches
similar memory.

This type of behavior was measured in the STAMP
benchmarks. Table 1 shows the conflict graph for each
transaction, and the measured value of each transaction’s
similarity. The Conflict Graph in Table 1 is a matrix repre-
sentation of the conflict graph seen by transactions during
the execution of the STAMP benchmarks. Each number in
the column Conflict Graph represents a conflict occurred
at some point between that transaction ID and the transac-
tion ID in listed in column 7x. Each transaction ID repre-
sents a transaction defined in the code. For the Delaunay
benchmark, it has transactions that conflict with every other
transaction in the system. The transactions 0, 2 and 3 have
a high similarity and should be serialized, while the trans-
action 1 has a very low similarity and should be treated by
a scheduler as a transaction that has transient conflicts. A
scheduler that can better identify transaction behavior will
be able to make more informed scheduling decisions.

3.2. Using bloom filters to extract transaction behavior

As seen in the previous section, calculating similarity re-
quires a set intersection, which can be expensive if the sets
are compared pairwise. This is not feasible in a HTM, so we
use Bloom Filters [7] to represent and work on transaction
read/write sets efficiently. As shown by Sanchez et al. [23]
implementing bloom filters in hardware can be done effi-
ciently in hardware. A unique contribution of this work is
to develop Bloom filter manipulations to estimate similarity.

We use work by Michael et al. [19] to develop the Bloom
filter operations to estimate similarity. The Bloom filter ma-
nipulations were originally developed to for fast join oper-
ations in large distributed databases. The main equations
used are the set size estimations(denoted as S~1(t)) of en-
coded Bloom filters(denoted as S(t)). Equation 2 calculates
the set size estimation of an encoded Bloom filter where ¢
is the number of bits set, m is the total size in bits of the
Bloom filter, and k is the number of hash functions used.
In(1—- 1)

m

$7H0) kxln(l— 1)

I

2

71

ATHITN ZTEDN ATHEN
/ \ / /\ \
0x0 OxFFFF 0x0 | [] Memory (RSN | (rrrr
/ - i
U _x_/
(Tx2,]

(a) Similar Transaction

(b) Dissimilar Transaction

Figure 1. Example transaction executions that show the difference between similar execution behav-
iors (a) and dissimilar execution behaviors (b) over time.

Benchmark [Tx [Conflict Graph [Similarity H Benchmark [Tx [Conflict Graph [Similarity

Delaunay [16] | O: 01 2 0.64 Intruder 0: 0 0.67
1: 0123 0.04 l: 12 0.40
2: 0123 0.56 2: 12 0.66
3: 123 0.90

Genome 0: 0 0.12 Ssca2 0: 0 0.90
1: 0.25 1: 0.90
2: 23 0.65 2: 2 0.57
3: 2 0.74
4 4 0.29

Kmeans 0: 0 0.38 Labyrinth 0: 0 0.86
1: 12 0.67 1: 2 0.45
2: 1 0.68 12 0.90

Vacation 0: 0 0.26

Table 1. Matrix representation of the conflict graph observed during the execution of each STAMP
benchmark and measured similarity for each unique transaction.

An estimation of set size of the intersection between two
Bloom filters shown in Equation 3 is also used.

Sanp(t) =Sy Y(S1(t) U Sa(t) (3)

Finally, Equation 3 derives the “Similarity” metric using
Bloom filters to represent read/write sets.

Yty 4+ 85 t) — S~

-1
Y anp(t)
Similarity = AvgRW SetSize(Tx,,) @

4. Implementation

This section describes the hardware and software imple-
mentation of BFGTS. The design uses fine-grained schedul-
ing between transactions and borrows concepts from PTS.
BFGTS maintains a graph structure in software of nodes
and edges to represent conflict history and confidence to fa-
cilitate scheduling decisions. The majority of BFGTS is
implemented as a software runtime that sits between the ap-
plication and the Operating System. A small TLB like hard-
ware accelerator is also present that operates when it sees a
TM_BEGIN instruction from the processor.

During the discussion of BFGTS there are two types of
transaction IDs (TxID) that will be used in this section:
“Static Transaction ID”(sTXID) and “Dynamic Transac-

tion ID”(dTxID). An sTxID is statically assigned in the pro-
gram code. A dTxID is a concatenation of thread ID and
sTxID.

4.1. Scheduling hardware accelerator

In BFGTS, before a transaction begins execution it must
scan a global array called the CPU Table—a list of the trans-
actions running on the processors in the system. At each
entry in the table, a confidence value representing the like-
lihood of a conflict between the transaction to be scheduled
and the running transaction is retrieved from a global graph
data structure. If the confidence exceeds a threshold value
the transaction is serialized. Scanning the CPU Table at the
start of every transaction adds overhead to each transaction.

BFGTS minimizes this overhead by using a hardware ac-
celerator to scan the CPU Table, look up confidence val-
ues, and compare them to a preset threshold. This is then
used to effect a scheduling decision in a few cycles. This
accelerator is triggered upon seeing a TX_BEGIN instruc-
tion. These operations are relatively simple, therefore the
hardware is small. The hardware implements the algorithm
shown in Example 1.

The scheduling hardware is illustrated in Figure 2. It
consists of a small cache, a handful of control registers, and
logic connected to the coherent interconnect. Each proces-

78

Example 1 Lookup algorithm implemented by hardware
accelerator

1 bool
2 {

3 for (i=0; i++){
4 confidx=CPUTable[i]>>shift_value;

5 conf=confidenceTable [sSTxID][confidx];
6 if (conf > threshold) {
7
8

scheduleTransaction (int sTxID)

i < sizeof (CPUTable);

dTxID _wait_on=CPUTable[1i];

return true;//conflict predicted
9 }
10 }
11 return false;//no conflict predicted
12 }

e N
CPU W/ LogTM L
g Conf | Conf [Wait

fm Prediction) Transaction

L1 ache

Instruction
Cache

Coherent Interconnect

L1 Data [’
Cache \

CPUO | CPU1 | CPU2 | CPU3
dTxID | dTxID | dTxID | dTxID
Snoop Logic

I
I
I
I

o= i
I
I
I
I
I
|

Confidence
. Cache /

|

|

|

|

|

|

CPU Table) [shift | Base | |!
walker Value | Addr }
|

|

|

|

)

i

Figure 2. Hardware required to accelerate
scheduling on TX_BEGIN for a 4 core system.

sor gets an identical predictor unit so the predictions are
fully distributed. The control registers consist of a CPU Ta-
ble that represents all the remote processors in the system
and the dTxID of its currently executing transaction. The
other registers are as follows: a physical base address of the
confidence value table to index into, the confidence thresh-
old to compare confidence values against, a shift register for
truncating dTxIDs in the CPU Table to sTxIDs, and a reg-
ister to hold the dTxXID of a transaction to serialize against
for later access by software. The hardware predictor con-
tains a small cache that is exclusively used for caching the
confidence table. The cache is necessary because the con-
fidence tables can be pushed out of the L1 caches, increas-
ing the time it takes to make a prediction. The cache is also
modified to fetch cache lines evicted by an invalidate snoop.
This is required to prevent always taking a miss when ac-
cessing the cache because the main processor writes to the
confidence tables frequently. The hardware overhead of the
small cache and accelerator is very small.

To interface the software with the hardware predic-
tion unit, the TX_BEGIN instruction is modified to trigger
the predictor to form a prediction, and a new instruction
TX_QUERY_PREDICTOR is added to modify the control
registers of the predictor. TX_BEGIN traditionally puts the
CPU into transactional mode, takes a register checkpoint,

but takes no register arguments. TX_BEGIN now takes a
vector to a suspendTx () function for the processor to
jump to if the hardware predictor returns that a conflict
is likely and the transaction should serialize. TX_BEGIN
triggers the hardware predictor to perform the algorithm in
Example 1 and waits for it to return either yes, a conflict
is likely and jump to suspendTx () or continue execu-
tion. The TX_QUERY_PREDICTOR instruction acts like
the ioctl () system call for the accelerator engine. The
instruction is used to communicate information such as the
physical address of the confidence table to use in the hard-
ware predictor, query what dTxID to serialize against, set
the confidence threshold to use, and query if a dTXID is still
executing in the system to allow busy waiting.

Additional requests are added to the coherent intercon-
nect to allow the predictors to update their arrays represent-
ing the state of each remote CPU. When a transaction is
allowed to execute, it broadcasts onto the interconnect the
dTxID of the starting transaction as well as the CPU ID. The
other predictors snoop this broadcast and update their ar-
rays accordingly. This is similar to TLB shootdown mech-
anisms when page table structures are updated on one CPU
that need to be updated to other CPU’s TLBs. On a trans-
action commit or abort, the CPU broadcasts the CPU ID
along with the transaction outcome for the other predictors
to update their internal state.

4.2. Software runtime component

The rest of BFGTS is kept in a software runtime to do
book keeping operations, such as updating the confidences
and calculating similarities of transactions. These book
keeping functions can be quite complicated. Therefore a
hardware mechanism would be infeasible as the amount of
logic and storage required would be on the order of an addi-
tional processor core. Properly optimized software with the
necessary ISA support is sufficient.

4.2.1. Data structure organization. The data structures
used in BFGTS are inspired by PTS, but modified to be
more efficient in both layout and space. An overview of
the data structures are shown in Figure 3.

The first data structure is a set of confidence tables that
are allocated per processor. This allows easy caching in
the private cache attached to the hardware accelerator. The
confidence tables hold the values that predict how likely a
conflict is between two transactions if they were to execute
concurrently in the future. In PTS, the confidence table was
one global table that had a confidence entry for each dTxID.
This table could grow to be 10’s of MBs in size. Instead
of tracking a confidence for every pair of dTxIDs, BFGTS
compresses the table to only maintain confidence values be-
tween each pair of sTxIDs assigned in the code. By tracking

79

Per CPU Confidence Table Tx Statistics Arrays

dTxID 0 Stat
STAD O | sTXID 1 | sTXID2 | | v o 4TXID 0:
tsximila(?y Read/Write Set
sTxIDO | 100 57 157 _waiting_on Bloom Filter
sTxID 1 99 200 220 :
dTxID N-1 Stats {
avg_size dTxID N-1:
sTxiD2 | 20 30 19 similarity Read/Write Set
‘ ‘ ‘ I i e Bloom Filter
I I I I

Figure 3. Data-structures for the confidence
tables, transaction statistics table and Bloom
filter tables kept in virtual memory.

only sTxIDs, the confidence table reduces to a maximum
size of 800Bytes for the benchmarks tested.

The second data structure required is an array of statis-
tics kept for each dTxID that is encountered during runtime.
For each dTxID three items are stored: average transaction
size, similarity, and if a conflict was predicted, the dTxID
of the conflicting transaction. The final data structure is a
table of the most recent Bloom filters for each dTxID. The
Bloom filters are used to calculate the average similarity of
each dTxID, and to update confidence of conflict between
sTxIDs on commit.

These data structures grow in similar fashion to the data
structures of PTS. The Confidence Tables grow in memory
in O(M?) where M is the number of transactions declared
statically in the code. The Tx Statistics Array grow in mem-
ory in O(N M) where N is the number of threads and M is
the number of transaction declared in the code. These struc-
tures can grow to be unbounded, and therefore may be in-
feasible for very large transactional codes. A solution to this
may be to allow aliasing in the prediction data structures—
multiple transactions mapping to the same Confidence Table
and Tx Statistics Array locations. This is left as future work
and not explored in this paper.

4.2.2. Scheduling subroutines. The bulk of BEGTS exists
as a software runtime. The software executes in user space,
and is fully distributed. Three scheduling operations are
done in software: Transaction Suspend, Transaction Abort,
and Transaction Commit.

Transaction Suspend is the routine that the CPU vec-
tors to when the TX_BEGIN instruction is informed by the
hardware predictor a conflict is likely and the transaction
needs to serialize. Example 2 illustrates how predicted con-
flicts are serialized in BFGTS. The dTxID of the transac-
tion being serialized against is recorded for use later dur-
ing transaction commit. If a dTxID; is predicted to con-
flict with another dT'z1D; that is historically small, then
dT'xzID; stalls waiting for dT'xID; to commit or abort.
If dT'xID; is larger than a small transaction threshold
then it is suspended and another thread switched in. In

Example 2 Suspend Transaction Handling Pseudo Code

void suspendTx (int dTxID,

{

int dTxIDSusp)

1
2
3 sim=0.5%(simOf (dTxID)+simOf (dTxIDSusp));
4 decay=decayVal*(l—sim);

5 decConfProb (sTxID,sTxIDSusp ,decay);
6 statsTable [dTxID]. txWaitingOn=dTxIDSusp;
7 if(avgTxSize (dTxIDSusp)>=SMALL_TX_SIZE){
8 pthread_yield ();

9 } else {

10 stallOnTx (dTxIDSusp);
11}

12 restore_checkpoint();
13 }

Example 3 Conflict Handling Pseudo Code

1 void txConflict(int dTxId,int dTxIdConf)
2 {

3 sim=0.5%(simOf(dTxId)+simOf(dTxIdConf));
4 inc=incValx*sim;

5 incConflictProb (dTxID,dTxIDConf, inc);

6 incConflictProb (dTxIDConf,dTxID, inc);

7

}

BFGTS pthread_yield() is used to switch threads.
Upon exiting suspendTx () the transaction restores its
register checkpoint and jumps to the PC to re-execute the
TX_BEGIN instruction. To allow transactions to return
to scheduling optimistically, a decay operation is used to
slowly decrease the confidence that a conflict will occur be-
tween two sTxIDs. Decay is weighted by the average sim-
ilarity of the two dTxIDs that are predicted to conflict to
drive how quickly decay occur. If a conflict is predicted
between two transactions and they are both very similar to
themselves, then a predicted conflict is likely to be accurate,
and the decay is small. On the other hand, if the transactions
are dissimilar, the decay will be large, allowing the confi-
dence to decay quickly to allow the two transactions to be
scheduled concurrently.

On Transaction Abort due to a conflict, first the transac-
tion rolls back its speculatively written state. Then it calls
the txConflict () routine presented in Example 3 to in-
crement confidence values of future conflict between the
two dTxIDs. Again similarity is used to guide how much
the confidence is incremented by.

When a transaction commits, various book keeping for
that transaction needs to happen for accurate scheduling in
the future. These operations are shown in pseudo-code in
Example 4. These items are the average transaction size,
the confidence between dTxIDs if one serialized against the
other, and the average similarity of the committed transac-

80

Example 4 Pseudo code for routines used during Transac-
tion Commit.

1 void commitTx(int dTxID)

2 {

3 updateAvgSize (dTxID);

4 updateBloom (dTxID);

5 int waitingOn=

6 checkWasSerialized (dTxID);

7

8 if (waitingOn!=NO_TX){

9 sim=0.5%(simOf (dTxID)+simOf(waitingOn));
10 if (intersectBlooms (dTxID, waitingOn)){
11 incConfProb (dTxID, waitingOn ,

12 incValxsim);

13 } else {

14 decConfProb (dTxID, waitingOn ,
15 decVal*(1—sim));
16 }

17}

18 }

19

20 void updateBloom (int dTxID)

21 {

22 nBloom=readCPUBloomFilter ();
23 uBloom=UNION(nBloom,

24 bloomFilterTable [dTxID]);
25 newSim=calcSim (nBloom,

26 bloomFilterTable [dTxID],
27 uBloom) ;

28 newSim=

29 newSim/txStats [dTxID].avgTxSize;

30 txStats[dTxID].sim=

31 0.5%x(txStats [dTxID]. sim+newSim);

32}

33

34 double calcSim (nBloom, oBloom,uBloom)

35 {

36 den=NUMHASHBITS* 1n (1 — 1/NUMBLOOMBITS) ;

37 newSize=

38 In(1—=(bitCnt (nBloom)/NUMBLOOMBITS))/ den;
39 oldSize=

40 In(1—(bitCnt (oBloom)/NUMBLOOMBITS))/ den ;
41 unionSize=

42 In(1—(bitCnt (uBloom)/NUMBLOOMBITS))/ den ;
43 return (newSize+oldSize—unionSize);

4 }

tion. To update the confidence of a conflict occurring in
the future between two transactions that serialized the re-
spective Bloom filters are intersected. If an intersection is
not null then the confidence is incremented, otherwise it is
decremented weighted by similarity.

Updating similarity is the most expensive part of
BFGTS. As seen in pseudo-code in Example 4, calculating
similarity requires two expensive functions: bitCnt (),

and 1n (). However, modern ISAs support both operations
at the instruction level. A low latency 64-bit wide popu-
lation count instruction, and a floating point logarithm in-
struction exist in modern ISAs like x86. These instructions
are: popcnt and fy12x [1]. The latencies of these in-
structions are 2-cycles and 13-cycles respectively for the
AMD K10 architecture [14].

The transaction commit stage of the scheduling runtime
can be particularly expensive, especially for small transac-
tions, adding 100’s of cycles of overhead to a transaction
that may only be a few 10’s of cycles in length. To reduce
the overhead for small transactions similarity is updated for
these transactions once every n commits. Large transac-
tions are able to amortize the overhead of updating simi-
larity on every commit, and usually benefit from the added
scheduling accuracy.

4.3. BFGTS-HW/Backoff algorithm

To further reduce overhead, we present a hybrid BEGTS
predictor borrowing ideas from Yoo and Lee’s [28] ATS
to allow the runtime to switch between using randomized
backoff when contention is low and BFGTS using the hard-
ware accelerator when contention is high. To measure con-
tention ATS’s metric conflict pressure is used to determine
when to switch between BFGTS and randomized backoff
with the goal of saving execution overhead. To implement
the HW/Backoff predictor small changes are made to the
presented BFGTS algorithm and described in the following
paragraphs.

On TM_BEGIN the runtime checks the conflict pressure
for the sTxID that wishes to execute, if it is over a set thresh-
old then BFGTS is enabled and a scheduling prediction is
made to suspend or continue execution. Otherwise, no pre-
diction is made and the transaction begins execution. This
allows the BFGTS-HW/Backoff predictor to save overhead
on a transaction begins by not always having to walk the
CPU Table on TX_BEGIN.

When a transaction commits, it checks conflict pres-
sure first in commitTx () from Example 4 to determine
if the transaction needs to perform the Bloom filter calcula-
tions. When conflict pressure is low, commitTx () skips
performing the similarity calculations eliminating schedul-
ing overhead. To update conflict pressure, the BFGTS-
HW/Backoff algorithm increases pressure on aborts in the
function txConflict () from Example 3, and predicted
conflicts in suspendTx () from Example 2 in the same
fashion as ATS. On commits, BFGTS-HW/Backoff de-
creases conflict pressure. Section 5 will show that being
able to switch between BFGTS and randomized backoff
eliminates enough overhead to allow larger Bloom filters
to be used and in some cases increase performance.

81

Feature

Description

Processors 16 one IPC Alpha cores @ 2GHz

Special popent 2-cycle latency,

Instructions fyl2x 15-cycle latency

L1 Caches 64kB, 1 cycle latency, 2-way associative,
64-byte line size

Tx Confidence | 2kB, 16-way associative

Cache 1 cycle latency, 64-byte line size

L2 Cache 32MB, 32 cycle latency, 16-way associa-
tive, 64-byte line size

Interconnect Shared bus at 2GHz

Main Memory

2048MB, 100 cycles latency

Linux Kernel

Modified v2.6.18

Contention
Managers

PTS, ATS, BEGTS-SW, BEGTS-HW,
BFGTS-HW/Backoff,
BFGTS-NoOverhead

Signature Size

512bit-8192bit for BFGTS commit rou-
tines, perfect signature used for conflict de-
tection.

Table 2. M5 Simulation Parameters

Benchmark | Input Parameters

Delaunay [16]| -ilarge.2 -m30 -t64

Genome -g4096 -s32 -n524288 -t64

Kmeans -m20 -n20 -t0.05 -i random50000_12 -p64
Vacation -n8 -q10 -u80 -r65536 -t131072 -c64
Intruder -al0 -132 -n8192 -s1 -t64

Ssca2 -s15-i1.0 -ul.0 -13 -p3 -t64

Labyrinth -i random-x96-y96-z3-n128.tx -t64

*We chose not to present the Bayes benchmark because of its non-
deterministic finishing conditions as noted in [9], which makes direct
comparisons between contention managers inconclusive

Table 3. STAMP Benchmark input parameters

5. Evaluation

5.1. Methodology

The M5 Full System Simulator [5] is used to evaluate
BFGTS. The baseline TM system is based on LogTM [20]
and has Operating System (OS) support. Three differ-
ent scheduling based contention managers are evaluated:
Adaptive Transaction Scheduling, Proactive Transaction
Scheduling, and Bloom Filter Guided Transaction Schedul-
ing. The simulation parameters are detailed in Table 2. The
latencies for the popcnt and £y12x instructions are mod-
eled as well. The hardware accelerator with accompanying
Tx Confidence Cache size as described in Table 2 has an
area overhead of ~3% of one 64kB L1 data cache.

The experiments for ATS, PTS and the four BFGTS vari-
ants assume an overcommitted system with 64 threads with
four threads assigned per processor. We chose this config-
uration, as an overcommitted system is typical for systems
running an OS. The advantage of such overcommitted sys-

tems is that when a thread blocks the OS can switch in an-
other thread. This avoids leaving a core idle thus increasing
throughput. We test the dynamically tuning software ver-
sion of ATS developed by Yoo and Lee [28] using pthreads
to suspend and wake threads when throttling. We test
the standard version of PTS presented by Blake et al. [6].
We tested four versions of BFGTS: The hardware accel-
erated version presented in the previous sections BFGTS-
HW, an all software version called BFGTS-SW, the hybrid
BFGTS algorithm from Section 4.3 combining BFGTS-
HW and Backoff managers called BFGTS-HW/Backoff,
and BFGTS-NoOverhead. BFGTS-NoOverhead, as its
name implies, implements BFGTS where all the software
functions presented in Section 4.2 complete in one cy-
cle. This is done to evaluate how well BFGTS predicts
and schedules around conflicts when it does not have to
amortize the cost of book keeping operations. BFGTS-
NoOverhead also uses perfect read/write set signatures.
The transaction schedulers are evaluated with the
STAMP benchmark suite [9]. The benchmark parameters
are shown in Table 3. These benchmarks stress the TM sys-
tem, especially the contention manager as they can suffer
high contention when using a simple backoff manager as
shown in Table 4. Statistics are collected only during the
parallel phase of each benchmark. For the Labyrinth bench-
mark, we modify the code to perform the grid copy outside
of the transaction as has been done by others. This allows
some parallel scaling as unmodified it operates serially.

5.2. Results

5.2.1. Overall performance. The results presented in this
section are the configurations of the BEGTS predictors with
their optimal size Bloom filter. The Bloom filter size was
varied from 512bits to 8192bits and Section 5.3.1 looks at
performance sensitivity to Bloom filter size. Update fre-
quency for small transactions was set to every 20 commits,
and small transactions were defined as transactions with an
average size of 10 cache lines or less. BEFEGTS-HW/Backoff
uses contention pressure threshold value of 0.25 and heav-
ily biases past history, therefore the frequency of switching
between backoff and BEGTS-HW is slow.

Figure 4(a) shows the speedups attained for each con-
tention manager (Backoff, ATS, PTS, BFGTS-SW, BFGTS-
HW, BFGTS-HW/Backoff and BFGTS-NoOverhead) on a
16 CPU system over a single core. Figure 4(b) normalizes
the speedup values to percent improvement over PTS. Ta-
ble 4 shows the contention experienced by each tested con-
tention manager.

Backoff is the worst performing contention manager. It
experiences the highest contention, as can be seen in Ta-
ble 4. This in turn leads to its poor performance compared
to the proactive schedulers for the STAMP benchmarks as

82

15
M Backoff 150

mPTS
W ATS 100
[BFGTS-SW

10 5 BFGTS-HW
W BFGTS-HW/Backoff 50
M BFGTS-No Overhead
5 0
elaunay Genome means Vacation Intruder
0

W ATS

W BFGTS-SW

M BFGTS-HW

W BFGTS-HW/Backoff
M BFGTS-No Overhead

P

Ssca2 Labyrinth AVG

Speedup

Percent Improvement

Ssca2

Delaunay Genome Kmeans Vacation Intruder Labyrinth -100

(a) Speedup over one core (b) Percent Improvement over PTS

Figure 4. Overall speedup and percent improvement over PTS for tested contention managers on a
16 processor system.

Benchmark | Backoff PTS ATS BFGTS BFGTS BFGTS BFGTS

-SW -HW -HW/Backoff -NoOverhead
Delaunay 73.5% | 28.0% 23.9% 22.2% 21.7% 23.7% 23.6%
Genome 61.1% 1.4% 1.0% 1.1% 1.1% 3.3% 3.8%
Kmeans 20.5% 2.9% 0.7% 1.2% 1.9% 6.5% 1.8%
Vacation 10.2% 8.9% 3.2% 4.6% 3.2% 5.3% 1.8%
Intruder 70.4% 4.6% 4.1% 5.5% 3.2% 9.9% 6.0%
Ssca2 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
Labyrinth 20.2% | 20.5% 6.5% 12.5% 9.3% 9.4% 9.3%

Table 4. Contention rates for the STAMP benchmarks for Backoff, PTS, ATS, BFGTS-SW, BFGTS-HW,

BFGTS-HW/Backoff and BFGTS-NoOverhead on a 16 processor system.

seen in Figure 4. Ssca?2 is the exception because it experi-
ences little contention and favors a very low overhead con-
tention manager.

ATS does well for most benchmarks, it is only 10%
worse than PTS, and is simpler in design. Most of the per-
formance loss is on Delaunay, Kmeans and Intruder bench-
marks. They have high contention which causes ATS to
schedule pessimistically. This is primarily due to these
benchmarks having dense conflict patterns and varying de-
grees of similarity as seen in Table 1. ATS is good for
benchmarks with sparse conflict patterns, such as Genome
or Vacation.

PTS is a more optimistic scheduler than ATS and there-
fore attains better performance. Because of its scheduling
algorithm, PTS is both too optimistic and pessimistic at
times as seen by the varied contention numbers in Table 4.
This leads to poorer overall performance on average, and
PTS loses to all BEGTS variants.

BFGTS-NoOverhead presents the best case performance
of the BFGTS technique by modeling all scheduling op-
erations completing in one cycle. As can be seen in Fig-
ures 4(a) and 4(b), BFGTS-NoOverhead is comparable or
better than all the tested contention managers. It is on aver-
age 50% better than PTS. This is due to both its low over-
head as well as better predictions from using perfect read-
/write signatures for similarity calculations

BFGTS-SW uses no hardware acceleration, and does all
scheduling operations in software. This adds overhead and

decreases overall performance even though it has low con-
tention. This overhead causes BEGTS-SW to lose on 4 out
of 7 benchmarks to PTS, ATS or Backoff. These bench-
marks are Kmeans, Vacation, Ssca2 and Labyrinth. The re-
maining benchmarks see improvement, implying BFGTS-
SW makes better predictions that either ATS or PTS, over-
coming its software overheads. BFGTS-SW has only a 7%
average improvement over PTS because of these overheads.

BFGTS-HW eliminate some of the overheads of
BFGTS-SW by using the hardware accelerator from Sec-
tion 4.1 to perform fast scheduling predictions. BFGTS-
HW gets 25% better performance on average than PTS and
18% over BFGTS-SW. The hardware accelerator enables
significant performance improvement. BFGTS-HW gets a
maximum performance increase of 75% over PTS in the In-
truder benchmark and 4.6x over ATS in Delaunay. BFGTS-
HW does lose in 3 out of 7 benchmarks to ATS or Backoff
because it also deals with overheads involved with calculat-
ing similarities on commit. Those benchmarks are Vacation,
Ssca2 and Labyrinth.

BFGTS-HW/Backoff further eliminates overhead by
switching between backoff and BFGTS-HW getting 30%
better performance than PTS on average. Switching be-
tween low overhead backoff and BFGTS-HW gets signif-
icant performance increases for the Genome and Vacation
benchmarks, approaching BFGTS-No Overhead perfor-
mance. This is because BFGTS-HW/Backoff is able save
scheduling overhead for Genome. For Vacation BFGTS-

83

BFGTS-HW/Backoff

BFGTS-HW

BFGTS-SW

ATS

PTS

~ BFGTS-HW/Backoff
BFGTS-HW

Labyrinth

Ssca2
=}
2
3
@
o
=

Non Transactional O Kernel M Transactional W Abort M Scheduling

BFGTS-HW/Backoff

BFGTS-HW

Intruder

BFGTS-SW

ATS

PTS

BFGTS-HW/Backoff
BFGTS-HW
BFGTS-SW
ATS
PTS
BFGTS-HW/Backoff
BFGTS-HW
BFGTS-SW
ATS
PTS
~ BFGTS-HW/Backoff
BFGTS-HW
BFGTS-SW
ATS
PTS
~ BFGTS-HW/Backoff
BFGTS-HW
BFGTS-SW

Vacation

Kmeans

@iii%ﬂEﬂiﬂiﬂ*‘mﬁ@ﬂﬁhﬁm

Genome

Delaunay

ATS

T

L

PTS

[S)
o
[

0.2 0.3

0.

4 0.5 0.6 0.7 0.8 0.9

Normalized Runtime

Figure 5. Time breakdown of the overheads for PTS, ATS, BFGTS-SW, BFGTS-HW and BFGTS-

HW/Backoff for a 16 processor system.

HW/Backoff both saves overhead and can use larger Bloom
filters for similarity calculations to make better predic-
tions. It is also able to get closer to Backoff on Ssca2
and Labyrinth. BFGTS-HW/Backoff does increase con-
tention some, as seen in Table 4, because it is switching
continuously between backoff and BFEGTS-HW. This leads
to slightly worse performance than BEGTS-HW for some
benchmarks.

Figure 5 provides a breakdown of where each schedul-
ing technique spends it execution time normalized to
single processor execution time. In cases where ATS
has worse performance—Delaunay, Kmeans and Intruder
benchmarks—most of its time is spent in kernel mode. This
is due to ATS serializing threads to a central wait queue us-
ing pthread operations when contention is high. These op-
erations quickly dominate runtime when ATS has to throttle
execution for high contention applications. In other cases
such as Ssca2, ATS is able to attain higher performance
due to its extremely low scheduling overheads. This is
in contrast to the BFGTS techniques which spend a fair
amount of execution time in scheduling code for all bench-
marks. Overall the overhead is less than that of PTS because
the BFGTS technique appears to be making better predic-
tions from the similarity metric, and the BFGTS-HW and
BFGTS-HW/Backoff extensions further help to reduce ex-
ecution overhead. This allows for better performance in the
benchmarks Kmeans, Ssca2, Vacation and Genome which
are overhead sensitive. In the case of BFEGTS-HW/Backoff,

it significantly reduces overhead of BFGTS-HW allowing
for much higher performance on the Genome and Vaca-
tion benchmarks. In the benchmark Intruder scheduling is
needed continuously, all methods spend a large amount of
time scheduling to keep contention under control and pro-
vide forward progress.

5.3. Sensitivity studies

There are many parameters to explore that effect perfor-
mance for the BFGTS technique. Presented here are the
two parameters that had noticeable effects on performance:
Bloom filter size, and Small transaction accounting interval.

5.3.1. Bloom filter size. Bloom filter size has a noticeable
impact on performance for BFGTS-HW as shown in Fig-
ure 6(a). For benchmarks Kmeans, Ssca2 and Intruder, the
smallest Bloom filter size of 512bits performs best. These
benchmarks are sensitive to the overhead imposed by doing
the similarity calculations for large Bloom filters.

For Delaunay, Genome, and Vacation, these benchmarks
prefer larger Bloom filters, on the order of 1024bits to
2048bits in size. They can tolerate the overhead of doing
the similarity calculations when committing a transaction
as it is offset by better predictions leading to better perfor-
mance. As the Bloom filter sizes increase to greater than
4096bits, the overhead of doing the similarity calculations

84

15

W 512bit Bloom
[1024bit Bloom
W 2048bit Bloom
W 4096bit Bloom
10 m8192bit Bloom

Delaunay Genome Kmeans Vacation Intruder Ssca2

(a) BFTGS-HW Bloom Filter Sensitivity

Labyrinth

15

W 512bit Bloom

[1024bit Bloom
W 2048bit Bloom
W 4096bit Bloom
W 8192bit Bloom

Delaunay = Genome Kmeans Vacation Intruder Ssca2 Labyrinth

(b) BFGTS-HW/Backoff Bloom Filter Sensitivity

Figure 6. Speedups attained for different sized Bloom filters for BFGTS-HW and BFGTS-HW/Backoff

for a 16 processor system.

dominates any performance increase had from better pre-
diction accuracy.

The last benchmark, Labyrinth, appears insensitive to
Bloom filter size until the largest Bloom filter (8192bits)
is used. Labyrinth has very large transactions, and therefore
large Bloom filters allow for better prediction accuracy and
prevent overly pessimistic predictions. Because the transac-
tions are large, it is able to amortize the cost of calculating
similarity with 8192bit Bloom filters.

For the BFGTS-HW/Backoff contention manager, Fig-
ure 6(b) shows it is not as sensitive to Bloom filter size
as BFGTS-HW. Because BEFGTS-HW is turned on and off
by BFGTS-HW/Backoff it is able to on average use larger
Bloom filters. This is especially apparent for the Vaca-
tion benchmark where BEGTS-HW/Backoff is able to use
8192bit Bloom filters and approach the performance of
BFGTS-No Overhead. On the other hand, BFGTS-HW is
only able to amortize the cost of using a 2048bit filter as
seen if Figure 6(a) and achieves significantly less perfor-
mance due to lower prediction accuracy.

5.3.2. Small transaction calculation interval. As covered
in Section 4.2.2, to eliminate some of the overhead of cal-
culating similarity for transactions that are very small, a
sweep of accounting intervals for similarity was performed.
This consisted of testing the similarity calculations on every
commit, every 10 commits, and every 20 commits. Updat-
ing on every commit affects overall average performance of
BFGTS-HW, decreasing it to 20% better on average over
PTS. Performing similarity calculations for small transac-
tions every 10 gets an overall average performance of 23%
better than PTS. As presented in the results here performing
similarity calculations for small transactions every 20 gets
an overall average performance of 25% better than PTS.

6. Conclusion

For transactional memory to be widely adopted, it has to
be easy to work with. The study by Rossbach et al. [22]

indicated that it is indeed easier to program with fewer con-
currency errors compared to legacy techniques. Contention
in TM is an important problem, particularly when novice
programmers create large critical sections with irregular be-
havior. To achieve scalable performance contention must be
minimized, but requiring the programmer to identify and fix
these sources of contention by hand essentially eliminates
the programmability benefits of TM. To remove the respon-
sibility of discovering these sources of contention from the
programmer, proactive transaction scheduling techniques
have been proposed. They attempt to avoid contention be-
fore it happens; achieving better performance in high con-
tention situations when reactive contention managers fail.

In this work we propose a new proactive scheduling tech-
nique called “Bloom Filter Guided Transaction Schedul-
ing” (BFGTS). It uses Bloom filters to characterize trans-
action behavior to guide scheduling predictions coupled
with simple hardware to accelerate high overhead opera-
tions. BFEGTS-HW obtains a 25% speedup on average over
PTS and up to 1.7x improvement on high contention bench-
marks. Compared to ATS, BFGTS-HW obtains 35% bet-
ter performance on average and up to 4.6x improvement on
high contention benchmarks. A hybrid version, BEFGTS-
HW/Backoff can do better, getting 30% speedup over PTS
and 40% over ATS on average.

References

[1] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. Intel Developer Manuals, 2, Nov 2008.

[2] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham,
and I. Watson. Advanced concurrency control for trans-
actional memory using transaction commit rate. In EU-
ROPAR °08: Proc. 14th European Conference on Paral-
lel Processing, pages 719-728, Aug 2008. Springer-Verlag
Lecture Notes in Computer Science volume 5168.

[3] M. Ansari, M. Lujan, C. Kotselidis, K. Jarvis, C. Kirkham,
and I. Watson. Steal-on-abort: Improving transactional
memory performance through dynamic transaction reorder-
ing. In HIPEAC ’09: Proc. 4th International Conference on

85

[4]

(5]

(6]

(71

[8

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

High Performance and Embedded Architectures and Com-
pilers, pages 4—18, Jan 2009. Springer-Verlag Lecture Notes
in Computer Science volume 5409.

T. Bai, X. Shen, C. Zhang, W. N. Scherer III, C. Ding, and
M. L. Scott. A key-based adaptive transactional memory ex-
ecutor. In Proceedings of the NSF Next Generation Software
Program Workshop. Mar 2007. Invited paper. Also available
as TR 909, Department of Computer Science, University of
Rochester, Dec 2006.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The m5 simulator: Modeling
networked systems. /EEE Micro, 26(4):52-60, 2006.

G. Blake, R. G. Dreslinski, and T. Mudge. Proactive trans-
action scheduling for contention management. In Micro-
42: Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 156-167,
New York, NY, USA, 2009. ACM.

B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Commun. ACM, 13(7):422-426, 1970.

J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood. Performance pathologies in hard-
ware transactional memory. In Proceedings of the 34th An-
nual International Symposium on Computer Architecture.
Jun 2007.

C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE In-
ternational Symposium on Workload Characterization, Sep
2008.

D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth,
M. Pohlack, C. Fetzer, M. Nowack, T. Riegel, P. Fel-
ber, P. Marlier, and E. Riviere. Evaluation of AMD’s ad-
vanced synchronization facility within a complete transac-
tional memory stack. In EuroSys '10: Proceedings of the
5Sth European conference on Computer systems, pages 27—
40, New York, NY, USA, 2010. ACM.

C. Click. Azuls experiences with hardware transactional
memory. In In HP Labs - Bay Area Workshop on Trans-
actional Memory, 2009.

S. Dolev, D. Hendler, and A. Suissa. Car-stm: scheduling-
based collision avoidance and resolution for software trans-
actional memory. In Proceedings of the Twenty-Seventh An-
nual ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 125-134. Aug 2008.

A. Dragojevié, R. Guerraoui, A. V. Singh, and V. Singh. Pre-
venting versus curing: Avoiding conflicts in transactional
memories. In PODC ’09: Proc. 28th ACM Symposium on
Principles of Distributed Computing, Aug 2009.

A. Fog. Instruction tables: Lists of instruction laten-
cies, throughputs and micro-operation breakdowns for Intel,
AMD and VIA CPUs, 2010.

M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proceedings
of the 20th Annual International Symposium on Computer
Architecture, pages 289-300. May 1993.

M. Kulkarni, L. P. Chew, and P. Keshav. Using transactions
in delaunay mesh generation. Workshop on Transactional
Memory Workloads, 2006.

86

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

J. R. Larus and R. Rajwar. Transactional Memory. Morgan
& Claypool, 2006.

W. Maldonado, P. Marlier, P. Felber, A. Suissa, D. Hendler,
A. Fedorova, J. L. Lawall, and G. Muller. Scheduling sup-
port for transactional memory contention management. In
PPoPP ’10: Proceedings of the 15th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 79-90, New York, NY, USA, 2010. ACM.

L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski. Im-
proving distributed join efficiency with extended bloom fil-
ter operations. Advanced Information Networking and Ap-
plications, International Conference on, 0:187-194, 2007.
K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. Logtm: Log-based transactional memory. In
Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, pages 254-265. Feb
2006.

H. E. Ramadan, C. J. Rossbach, O. S. Hofmann, and
E. Witchel. Dependence-aware transactional memory. In
The 41st Annual International Symposium on Microarchi-
tecture. Nov 2008.

C. Rossbach, O. Hofmann, and E. Witchel. Is transactional
memory programming actually easier? In WDDD ’09: Proc.
8th Workshop on Duplicating, Deconstructing, and Debunk-
ing, Jun 2009.

D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam.
Implementing signatures for transactional memory. In MI-
CRO °07: Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 123—133.
IEEE Computer Society, 2007.

W. N. Scherer III and M. L. Scott. Contention management
in dynamic software transactional memory. In Proceedings
of the ACM PODC Workshop on Concurrency and Synchro-
nization in Java Programs, St. John’s, NL, Canada, Jul 2004.
W. N. Scherer III and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
Proceedings of the 24th ACM Symposium on Principles of
Distributed Computing, Las Vegas, NV, Jul 2005.

N. Sonmez, T. Harris, A. Cristal, O. S. Unsal, and M. Valero.
Taking the heat off transactions: Dynamic selection of pes-
simistic concurrency control. In /PDPS "09: Proc. 23rd In-
ternational Parallel and Distributed Processing Symposium,
May 2009.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proceedings of the 22th Interna-
tional Symposium on Computer Architecture, pages 24-36,
Santa Margherita Ligure, Italy, 1995.

R. M. Yoo and H.-H. S. Lee. Adaptive transaction schedul-
ing for transactional memory systems. In SPAA ’08: Pro-
ceedings of the twentieth annual symposium on Parallelism
in algorithms and architectures, pages 169-178, New York,
NY, USA, 2008. ACM.

C. Zilles and L. Baugh. Extending hardware transactional
memory to support nonbusy waiting and nontransactional
actions. In Proceedings of the First ACM SIGPLAN Work-
shop on Languages, Compilers, and Hardware Support for
Transactional Computing. Jun 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

